PROGRAMME OUTCOME (PO):

PO-1: Discipline Knowledge: Knowledge of science and ability to apply to relevant areas

PO-2: Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline

PO-3: Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.

PO-4: Ethics: Apply the professional ethics and norms in respective discipline.

PO-5: Individual and teamwork: Work effectively as an individual multidisciplinary team.

PO-6: Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

COURSE OUTCOME

I SEMESTER

Subject	Subject code	Course outcome
Mechanics and	BSCPHCN101	CO-1: Will learn fixing units, tabulation of
properties of matter		observations, analysis of data (graphical/analytical)
		CO-2: Will learn about accuracy of measurement and
		sources of errors, importance of significant figures.
		CO-3: Will know how g can be determined
		experimentally and derive satisfaction.
		CO-4: Will see the difference between simple and
		torsional pendulum and their use in the determination
		of various physical parameters.
		CO-5: Will come to know how various elastic moduli
		can be determined.
		CO-6: Will measure surface tension and viscosity and
		appreciate the methods adopted.
		CO-7: Will get hands on experience of different
		equipment

II SEMESTER

Subject		Subject code	Course outcome
Electricity	and	BSCPHCN201	CO 1. Will demonstrate Gauss law, Coulomb's law for the
Magnetism			electric field, and apply it to systems of point charges as
			well as line, surface, and volume distributions of charges.
			CO 2. Will explain and differentiate the vector (electric
			fields, Coulomb's law) and scalar (electric potential,
			electric potential energy) formalisms of electrostatics.
			CO 3. Will be able to apply Gauss's law of electrostatics
			to solve a variety of problems.
			CO 4. Will describe the magnetic field produced by
			magnetic dipoles and electric currents.
			CO 5. Will be able to explain Faraday-Lenz and Maxwell
			laws to articulate the relationship between electric and
			magnetic fields.
			CO 6. Will be in position to describe how magnetism is
			produced and list examples where its effects are observed.
			CO7. Will be able to apply Kirchhoff's rules to analyze
			AC circuits consisting of parallel and/or series
			combinations of voltage sources and resistors and to
			describe the graphical relationship of resistance, capacitor
			and inductor.
			CO 8. Will understand and able to apply various network
			theorems such as Superposition, Thevenin, Norton,
			Reciprocity, Maximum Power Transfer, etc. and their
			applications in electronics, electrical circuit analysis, and
			electrical machines.

III SEMESTER

Subject	Subject code	Course outcome
Wave motion and	BSCPHCN301	CO 1. Identify different types of waves by looking into
optics		their characteristics.
		CO 2. Formulate a wave equation and obtain the
		expression for different parameters associated with
		waves.
		CO 3. Explain and give a mathematical treatment of the
		superposition of waves under different conditions, such
		as, when they overlap linearly and perpendicularly with
		equal or different frequencies and equal or different
		phases.
		CO 4. Describe the formation of standing waves and how
		the energy is transferred along the standing wave in
		different applications, and mathematically model in the
		case of stretched string and vibration of a rod.
		CO 5. Give an analytical treatment of resonance in the
		case of open and closed pipes in general and Helmholtz
		resonators in particular.
		CO 6. Describe the different parameters that affect the
		acoustics in a building, measure it and control it.
		CO 7. Give the different models of light propagation and
		phenomenon associated and measure the parameters like
		the wavelength of light using experiments like Michelson
		interferometer, interference and thin films.
		CO 8. Explain diffraction due to different objects like
		singles slit, two slits, diffraction of grating, oblique
		incidence, circular aperture and give the theory and
		experimental setup for the same.
		CO 9. Explain the polarization of light and obtain how the
		polarization occurs due to quarter wave plates, half wave
		plates, and through the optical activity of a medium.

IV SEMESTER

Subject	Subject code	Course outcome
Thermal physics and	BSCPHCN401	CO 1. Apply the laws of thermodynamics and analyze
electronics		the thermal system.
		CO 2. Apply the laws of kinetic theory and radiation
		laws to the ideal and practical thermodynamics systems
		through derived thermodynamic relations.
		CO 3. Use the concepts of semiconductors to describe
		different Semiconductor devices such as diode
		transistors, BJT, FET etc. and explain their functioning.
		CO 4. Explain the functioning of OP-AMPS and use
		them as the building blocks of logic gates.
		CO 5. Give the use of logic gates using different
		theorems of Boolean Algebra followed by logic
		circuits.

V SEMESTER

Paper V

Subject	Subject code	Course outcome
Classical Mechanics	BSCPHCN501	CO 1. Identify the failure of classical physics at the
and Quantum		microscopic level.
mechanics -I		CO 2. Find the relationship between the normalization
		of a wave function and the ability to correctly calculate
		expectation values or probability densities.
		CO 3. Explain the minimum uncertainty of measuring
		both observables on any quantum state.
		CO 4. Describe the time-dependent and time-
		independent Schrödinger equation for simple potentials
		like for instance one-dimensional potential well and
		Harmonic oscillator.

CO 5. Apply Hermitian operators, their eigenvalues and
eigenvectors to find various commutation and
uncertainty relations.

Paper- VI

Subject	Subject code	Course outcome
Elements of atomic,	BSCPHCN502	CO 1. Describe atomic properties using basic atomic
molecular and laser		models.
Physics		CO 2. Interpret atomic spectra of elements using vector
		atom model.
		CO 3. Interpret molecular spectra of compounds using
		basics of molecular physics.
		CO 4. Explain laser systems and their applications in
		various fields.

VI SEMESTER

Paper VII

Subject	Subject code	Course outcome
Elements of	BSCPHCN601	CO 1. Explain the basic properties of nucleus and get
Condensed Matter		the idea of its inner information.
and Nuclear Physics		CO 2. Understand the concepts of binding energy and
		binding energy per nucleon v/s mass number graph
		CO 3. Describe the processes of alpha, beta and gamma
		decays based on well-established theories
		CO 4. Explain the basic aspects of interaction of gamma
		radiation with matter by photoelectric effect, Compton
		scattering and pair production
		CO 5. Explain the different nuclear radiation detectors
		such as ionization chamber, Geiger-Mueller counter
		CO 6. Explain the basic concept of scintillation
		detectors, photo-multiplier tube and semiconductor
		detectors

Paper- VIII

Subject	Subject code	Course outcome
Electronic	BSCPHCN602	CO 1. Identify different types of tests and measuring
instrumentation and		instruments used in practice and understand their basic
Sensors		working principles.
		CO 2. Get hands on training in wiring a circuit,
		soldering, making a measurement using an electronic
		circuit used in instrumentation.
		CO 3. Have an understanding of the basic electronic
		components viz, resistors, capacitors, inductors, discrete
		and integrated circuits, color codes, values and pin
		diagram, their practical use
		CO 4. Understanding of the measurement of voltage,
		current, resistance value, Identification of the terminals
		of a transistor and ICs
		CO 5. Identify and understand the different types of
		transducers and sensors used in robust and hand-held
		instruments
		CO 6. Understand and give a mathematical treatment of
		the working of rectifiers, filter, data converters and
		different types of transducers.
		CO 7. Connect the concepts learnt in the course to their
		practical use in daily life.
		CO 8. Develop basic hands-on skills in the usage of
		oscilloscopes, multimeters, rectifiers, amplifiers,
		oscillators and high voltage probes, generators and
		digital meters
		CO 9. Servicing of simple faults of domestic appliances:
		Iron box, immersion heater, fan, hot plate, battery
		charger, emergency lamp and the like.